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Abstract: This study aims to evaluate the characteristics of conditional volatility of the Indian stock market and compare the 

nature of volatility between the boom-and-bust phase of the Indian Financial cycle. The asymmetric volatility modelling is 

conducted using Exponential GARCH (EGARCH), Asymmetric power GARCH (APARCH) and GJR-GARCH on S&P Nifty 50 

during July 2001 to June 2017 to arrest the nature of Indian financial cycle. We perform Value at Risk back-testing for adequacy 

of model fitness and compare half-life estimation for understanding the nature of persistence. Our study identifies APARCH (1,1) 

to be the best model for explaining boom phase volatility and EGARCH (1,1) as the best model for bust phase. The study also 

reveals the existence of inverse leverage effect in the boom-and-bust phase of the financial cycle. Our study originally contributes 

by comparing and documenting the empirical performance of GARCH processes during the boom-and-bust phase of Indian 

Financial Cycle. These empirical results would be beneficial for better risk management, portfolio optimisation and asset pricing. 

 

Index Terms - Asymmetric GARCH models, EGARCH, APARCH, GJR GARCH, Financial Cycle, Half-life estimation, Leverage effect. 

I. INTRODUCTION 

 

Volatility refers to the uncertainty in the stock market and investors' perception of risk majorly begins with uncertainty of future 

outcomes. This makes volatility forecasting a vital factor in risk management, portfolio management and valuation of asset pricing. 

Volatility is only observable through a conditional variance process. Subsequently, a number of models have been established over 

the time, especially designed to arrest the conditional volatility of financial time series. The primary intention of constructing such 

models is to forecast future volatility that would enable improvement in portfolio allocation, having an improved risk management 

process. Further, policy makers would able to gauge stock market volatility as an indicator for the susceptibility of external and 
internal shock of the economy and financial market. 

There are prominent evidences that the Global financial crisis (GFC) of 2007-08 has significant negative spillover on the real 

economy. The weaknesses inside the financial framework are found to be cyclical developments of financial factors like overvaluation 

of asset prices, prolonged credit booms and lower interest rates for a much longer time have preceded many financial crises throughout 

the world economy. These developments encouraged researchers to further investigate the relationship between financial cycles and 

factors of asset prices. Boom phase of Financial Cycles is generally characterized by increased capital flow, increased asset prices 

and high liquidity and massive credit growth in the real economy. These symptoms can induce formation of asset price bubbles as 
seen during GFC. 

As Borio (2014) illustrated financial cycle thoughtfully, as an “self-reenforcing interaction” between risk and asset value which 

ultimately evolved to a boom-and-bust phenomenon. The cyclical changes of financial variables may exaggerate economic 

fluctuations, cause imbalances, lead to economic uncertainty and/or threaten financial stability of country. Many researchers provide 

evidences of cyclical features of financial markets as well. Financial cycles are longer than business cycles and can provides an early 

warning signal of uncertainty and risk aversion of financial market participants (Menden, 2017). In addition, financial crises mature 

at or near the peak of financial cycles (Borio, 2014) indicating a bust phase of financial cycle.  

Our study is important to explore the nature of volatility of the Indian stock market during the financial cycle to understand the 

dynamic nature of volatility and leverage effect during boom-and-bust phases of the financial cycle. Secondly, this study will enhance 

the volatility forecasting of the Indian market, which will be helpful for risk management, portfolio allocation and asset pricing. The 

current study focuses on adequacy of different asymmetric GARCH models to capture the predictable features of volatility on the 

Indian stock market during the Indian Financial Cycle established by Behera and Sharma (2019). This paper is adding value to the 

current body of literature, for investors and portfolio managers, through connecting the characteristics of boom-and-bust phases with 

a testing procedure of asymmetric GARCH model extensions for different volatility regimes. Volatility estimation is performed on 

Nifty 50, major stock market indices in India. The fitted models are then evaluated to judge the model performance in terms of Value 

at Risk (VaR) at 5% significance level.  
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II. LITERATURE REVIEW 

Modelling and forecasting of stock market volatility has immense importance for investors and academicians due to the 

application of asset pricing, risk mitigation and portfolio strategy. Plethora studies have been conducted across the globe using family 

of GARCH models for analysing the volatility of financial time series ( (Bekaert & Wu, 2000), (Jayasuriya, Shambora, & Rossiter, 

2009), (Talpsepp & Rieger, 2010), (Horpestad, Lyócsa, Molnár, & Olsen, 2019), (Iqbal, Manzoor, & Bhatti, 2021)). The effect that 

volatility in equity markets seems to be asymmetric: i.e., negative returns tend to increase volatility to a larger extent than positive 

returns, is well documented. The observation was first recognized by Black (1976) and Christie (1982) who elucidated the 

lopsidedness with the leverage effect, meaning that a decrease in the value of the stock increases financial leverage, which makes the 

stock riskier. Asymmetricity and leverage is a vital issue in the context of financial markets, and the GARCH type of models may 

provide a good illustration of volatility. Many researchers found asymmetric GARCH models like EGARCH, GJR-GARCH, 

APARCH etc. has superior predictability than symmetric GARCH and OLS methods ( (Pagan & Sossounov, 2003), (Awartani & 
Corradi, 2005), (Balaban & Bayar, 2005), (Hansen & Lunde, 2006)). 

Heteroscedastic behaviour of Indian stock market was investigated by Karmakar (2007) using EGARCH model. It was observed 

that asymmetric volatility rises during the declining phase of market and returns are not statistically correlated to the risk. Mohanty 

(2009) compared 4 major indices of India using symmetric and asymmetric models and concluded EGARCH to be appropriate model 

to explain existing asymmetricity. Bordoloi and Shankar (2008) explored volatility of four Indian stock market indices using 

TGARCH and EGARCH models. They reported TGARCH was able to explain volatility in BSE Indices and S&P CNX 500 while 

EGARCH aptly explain volatility of S&P CNX Nifty. They also observed presence of leverage effect in all the indices. Goudarzi and 

Ramanarayanan (2011) applied TGARCH and EGARCH on BSE 500 to capture asymmetric nature of India market and found 

negative news impact increases stock market volatility more than good news. Vijayalakshmi & Gaur (2013) used GARCH family 

models to evaluate the accuracy and forecasting capabilities, found TARCH and PARCH models showcased better volatility forecast 

for stock market indices. Tripathy and Gil-Alana (2015) proposed asymmetric volatility model performed better than symmetric 

model in Indian market. Also, they suggested Generalised Error distribution was the most suitable for asymmetric model. Samineni 

et al. (2021) unveiled EGARCH model can capture lopsided volatility in Indian market between 2011 to 2020. 

As far as our knowledge, no previous study has been conducted on the volatility modelling during Indian Financial Cycle 

comparing the dynamic change in the asymmetricity and half-life estimation. Therefore, the objective of this paper will be an attempt 

to compare the asymmetric volatility between 2001 to 2017 including boom and bust phases of the Indian Financial cycle using 

EGARCH, APARCH and GJR-GARCH models. Moreover, we will compare four alternative density functions namely, normal, 

student t, skewed student t and GED to identify the best model for volatility modelling in the Indian market in two different phases 
and try to identify the leverage effect and half-life measurement. 

III. METHODOLOGY 

In the empirical studies, it is strongly advocated that to use conditional heteroskedastic variance instead of homoscedastic variance 

and models. Predominantly, in high frequency models like financial time series analysis should involve working with heteroskedastic 

models. A few salient features of stock returns are well documented like heavy-tail distribution, volatility clustering, leverage effect, 

co-movements of volatilities and mean reversion (Poon & Granger, 2003). Such idiosyncratic behaviour can be best explained by the 

Autoregressive Conditional Heteroscedasticity (GARCH) suggested by Engle (1982) and further generalised by Bollerslev (1986). 

The symmetric GARCH (p, q) is inappropriate as it fails to arrest the behaviour of the heavy tails. Alexander (2008) recommends the 

use of asymmetric GARCH models for equities and commodities. Thus, we nominate to model our index returns using the 

exponential-GARCH, APARCH and GJR-GARCH and compare how they arrest the idiosyncrasies. 

EGARCH (Exponential – GARCH) 

Nelson (1991) introduced Exponential GARCH and removed the non-negativity constraints imposed by the GARCH model. By 

including 𝛾 parameter E-GARCH can capture the leverage effect. The model specification is as follows: 

 
log(ℎ𝑡) =  𝜔 + 𝛽 log(ℎ𝑡−1) +  𝛾

𝜀𝑡−1

√ℎ𝑡−1

+  𝛼 [
|𝜀𝑡−1|

√ℎ𝑡−1

− √2
𝜋⁄ ] (1) 

Here, 𝜔 is a constant, 𝜀𝑡 is the innovation or the shock process, ℎ𝑡 is the conditional standard deviation. 𝛼 & 𝛽 respectively are 

the ARCH and GARCH parameters. 𝛾 is the leverage parameter.  

The conditional variance is constrained to be non-negative by the assumption that the logarithm of ℎ𝑡 is a function of past values 

of 𝜀𝑡
2. Given the error process parameterised as: 

 𝜀𝑡 = 𝜀𝑡−1
2 (ℎ𝑡)1/2 (2) 

From (1) we realize 𝛾 being a function of both the measure and sign of 𝜀𝑡
2 which empowers ℎ𝑡 to respond asymmetrically to 

positive and negative values of 𝜀𝑡, believed to be important for example in modelling the behaviour of stock returns. 

The EGARCH model in (1) seizures the lopsidedness in the returns because of the multiplicative term 
𝜀𝑡−1

√ℎ𝑡−1
. The coefficient 𝛾 is 

typically negative. That ensures positive return shocks induce less volatility than negative return shocks (Engle & Ng, 1993). If 𝛾 ≠
0, the impact is asymmetric in nature and if 𝛾 > 0, it is an indication of the existence of leverage effect and if statistically significant, 

a positive innovation (good news) in the past increases’ volatility more than a negative innovation (bad news). If 𝛾 < 0, then it 

specifies that leverage effect exists and if statistically significant, a negative shock (bad news) in the past increases’ volatility more 

than a positive shock (good news). 
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GJR-GARCH 

GJR-GARCH named after Glosten, Jagannathan and Runkle (1993), is another extension of GARCH with a third variable to 

arrest the asymmetricities in the returns. GJR model formulation differs from EGARCH model in the way it responds to previous 

negative volatility. Fundamentally, GJR model has an extra variable to capture leverage effect in the data stream. The variable γ 

enhances the volatility response to only negative market shocks. The generalized specification for the conditional variance is given 
by: 

 ℎ𝑡 =  𝜔 +  𝛼𝜀𝑡−1
2 + 𝛾𝜀𝑡−1

2 𝐼𝑡−1 + 𝛽𝜎𝑡−1
2  (3) 

where 𝐼𝑡−1 = 1 if 𝜀𝑡 < 0 and otherwise 0. In this particular model, positive shock and negative shock have diverse effect on the 

ℎ𝑡. Positive shock (𝜀𝑡−1 > 0) has an impact of 𝛼 and negative shock (𝜀𝑡−1 < 0) has an impact of (𝛼 +  𝛾). If 𝛾 > 0 and significant, 

then it implies negative shocks would increase return volatility or conditional volatility and there is a leverage effect. 

APARCH 

Ding, Granger and Engle (1993) introduced the APARCH (Generalized Asymmetric Power ARCH Model), which estimates the 

optimal power term. They reported that the absolute returns and their power transformations have a vastly substantial “long-term 

memory” property as the returns are highly correlated. This model can illustrate the Fat-tails, high kurtosis and Leverage Effects. The 
general structure is as follows: 

 𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖(|𝜀𝑡−𝑖| − 𝛾𝑖𝜀𝑡−𝑖)𝛿

𝑝

𝑖=1

+  ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑞

𝑗−1

 (4) 

where 𝜀𝑡 is the innovation process, 𝜎𝑡 is the conditional standard deviation. Here 𝛾 is the leverage variable and 𝛿 is the power 

term. Also, 𝜔 > 0, and 𝛼, 𝛽, 𝛿 ≥ 0, |𝛾| ≤ 1. In this model, conditional variance depends not only on the magnitude but also on the 

sign of 𝜀𝑡 results in positive shock and negative shock have different predictability of future volatility. 

Brook and Burke (2003) indicate that the lag order (1,1) of GARCH models is adequate to arrest all of the volatility clustering 

existing in the data. We have also chosen the model orders to (1,1) in essence of the literature. The GARCH models are estimated 

using a maximum likelihood (ML) methodology. The reason of using ML is to interpret the density as a function of the parameters 
set, conditional on a set of sample outcomes. 

In the seminal paper of Engle (1982), the density function was the standard normal distribution. The failure to seize the fat-tails 

property of high-frequency financial time series has led to the use of non-normal distributions to better model excessive third and 

fourth moments. For the current study we would use the most commonly used distributions like the normal distribution, Student-t 

distribution, Skewed student-t distribution and the Generalized Error Distribution (GED). We would compare all these density 
functions for individual models.  

Half-life estimation of Volatility 

Volatility demonstrates another feature of mean reversion; the short-term volatility reverts to its long term mean levels at a rate 

of sum of 𝛼 & 𝛽 (persistence). Half-life measurement is the average number of periods (days) for the volatility shock to revert to the 

long-term volatility levels. Engle and Patton (2001) defined half-life “A further measure of the persistence in a volatility model is the 

half-life of volatility”. This is defined as the time taken for the volatility to move halfway back towards its unconditional mean 
following a deviation from it.” Thus, we can write the subsequent formula of half-life for the volatility shocks: 

 𝐿ℎ𝑎𝑙𝑓 =  
ln (

1

2
)

ln (𝛼 + 𝛽)
 (5) 

It is important to note that if the value of (𝛼 + 𝛽) is closer to 1 then the half-life will be the longer. 

 

IV. DATA AND EMPIRICAL RESULTS 

Behera and Sharma (2019) identified Indian Financial cycle exhibited two troughs in 2001: Q2 & 2017: Q1 and only peak in 

2008: Q3. Depending on that, we segregate boom phase (upturn) from July 2001 to December 2008 and bust phase (downturn) 

January 2009 to June 2017. We have selected the Nifty 50 index and collected daily data from National Stock Exchange of India 
(NSE) of a total 4106 data point. The daily returns calculated using log returns formula:  

 𝐷𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 = ln(𝑃𝑡 − 𝑃𝑡−1) 

(6) 
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where 𝑃𝑡 is the closing price on day t. The descriptive statistics for the return series of Nifty 50 are summarized in Table 1. 

 Boom Bust 

Data points 1877 2229 

Min. -0.13054 -0.063802 

1st Qu -0.00695 -0.0053735 

Mean 0.00054 0.0005584 

3rd Qu 0.00942 0.0063303 

Max. 0.07969 0.1633431 

Std. Dev 0.01680864 0.01176722 

Skewness -0.7997669 1.000162 

Kurtosis 6.425719 18.04062 

Shapiro Wilk 0.92923 0.92606 

(p-value) (0.0000) (0.0000) 

ARCH LM 363.62 67.177 

(p-value) (0.0000) (0.0000) 

Unit Root Tests 

ADF -8.9343*** -10.697*** 

PP -1660.1*** -2004.8*** 

KPSS 0.23555* 0.12199* 

Table 1: Descriptive Statistics of Daily returns of Nifty 50 

 

The Nifty 50 return series exhibit asymmetric and leptokurtic (high peak) (see Figure 1 & Figure 2) properties. Interestingly, the 

boom phase is negatively (-0.7997669) skewed but the bust phase is positively skewed (1.000162). A further test of normality of 
Shapiro-Wilk yield test statistics of 0.9293 & 0.92606 (p-value < 0.01) confirms normality of both return series.  

 
Figure 1: Histogram of Boom phase of Nifty 50  

 
Figure 2: Histogram of Bust phase of Nifty 50 

The descriptive graph (Figure 3) display Nifty 50 returns exhibits volatility clustering that means periods of large changes in 
returns tend to group and followed by relatively low changes in returns.  

 
Figure 3: Return series of Nifty 50 full sample 

Estimation Results 

For volatility analysis the EGARCH, APARCH & GJR-GARCH models are executed on Nifty 50 returns series under Normal, 

Student-t, Student skewed-t and Generalized Error Distributions (Table 2). To preserve space the results of all the models with 

other distributions declined to present, but they are available upon request. The standard of model selection is based on in-sample 

diagnosis including minimum values of Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC), and highest 

maximum-likelihood (ML) values. 

For the boom phase, by ranking of Maximum Likelihood and all information criteria favour APARCH (1,1) – Skewed Student-t 

distribution and for bust phase, EGARCH (1,1) – Student-t distribution model. 
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 Boom Phase Bust phase 

Parameters 

EGARCH 

(1,1) skewed 

t 

APARCH 

(1,1) skewed 

t  

GJR 

GARCH 

(1,1) skewed 

t  

EGARCH 

(1,1) Std t  

APARCH 

(1,1) skewed 

t  

GJR 

GARCH 

(1,1) 

Skewed t 

𝜇 
0.000915*** 0.000914*** 0.000942*** 0.000613*** 0.000289*** 0.000354* 

[0.000294] [0.000299] [0.000288] [0.000048] [0.000204] [0.000197] 

𝜔 
-0.49228*** 0.000094 0.000013*** -0.11562*** 0.000032 0.000001 

[0.072527] [0.000104] [0.00000] [0.003103] [0.000035] [0.000001] 

𝛼 
-0.12662*** 0.141845*** 0.044455*** -0.07945*** 0.061084*** 0.010533* 

[0.021817] [0.022861] [0.00859] [0.011115] [0.011843] [0.005658] 

𝛽 
0.942786*** 0.802793*** 0.78886*** 0.987787*** 0.933108*** 0.927813*** 

[0.008439] [0.026534] [0.016025] [0.000311] [0.013316] [0.012337] 

𝛾 
0.276413*** 0.487299*** 0.21646*** 0.110512*** 0.72679*** 0.103817*** 

[0.030661] [0.114641] [0.036089] [0.005838] [0.15579] [0.012209] 

𝛿 
- 1.541003*** - - 1.333891*** - 

- [0.251878] - - [0.24395] - 

Information Criteria 

Max Likelihood 5414.49 5420.721 5419.496 7116.67 7113.299 7108.908 

Akaike -5.7597 -5.7653 -5.765 -6.373 -6.3681 -6.3651 

Bayes -5.7332 -5.7358 -5.7385 -6.3371 -6.3272 -6.3267 

Hannan-Quinn -5.7499 -5.7544 -5.7553 -6.3599 -6.3532 -6.3511 

Residual Check 

ARCH-LM 23.181 22.388 20.777 20.286 16.543 12.872 

(Prob) [0.28] [0.3198] [0.4103] [0.4402] [0.6824] [0.8828] 

Q (20) 20.375 20.577 19.664 27.799 29.337 30.305 

(Prob) [0.4347] [0.4224] [0.4791] [0.1142] [0.08134] [0.06506] 

Q^2 (20) 23.549 22.726 21.316 19.603 14.532 12.58 

(Prob) [0.2627] [0.3024] [0.3787] [0.483] [0.8025] [0.8947] 

Table 2: EGARCH, APARCH and GJR-GARCH conditional variance estimation 

[Note: ***, **, * respectively indicates rejection of the null at 1%, 5% and 10 % significance levels.] 

Boom phase analysis 

Form Table 2, we can see that all the ARCH and GARCH term for APARCH (1,1) are significant at 1% level and (𝛼 + 𝛽) < 1 for 

the boom phase of the Indian Financial cycle. Further, the 𝛽 coefficient is less than 1 meaning, the model is stationary and the shock 

to the model is temporary rather than permanent. Also, high 𝛽 value indicates high level of persistence in the data series and suggests 

a long memory effect (Ding, Granger, & Engle, 1993). The estimated APARCH model as follows: 

 𝜎𝑡
1.541003 = 0.000094 + 0.141845 (|𝜀𝑡−𝑖| − 0.487299 𝜀𝑡−𝑖)

1.541003 + 0.802793 𝜎𝑡−𝑗
1.541003 (7) 

Moreover, 𝛿, the power term is 1.541003 is positive and greater than 1 and the 𝛾 term is positive (0.487299) and significant at 1% 

level, inferring negative shocks can impact higher on volatility than the positive shocks. 

To check the performance of the model APARCH (1, 1), we executed a historical Value-at-Risk (VaR) back-test with exceedance 

of 0.05 and at confidence level of 0.95. We used Kupiec's unconditional coverage test Kupiec (1995) and Christoffersen’s 

conditional coverage test (Christoffersen, 1998). With a moving window of 496, refitting of 1 and expected exceedance of 24 we 

actually found 40 VaR exceedance (8.1%). We had a p-value of 0.004 in Kupiec test and 0.011 in Christoffersen test, which is less 

than 5% significance level. We accept the alternative hypothesis.  

Figure 4 and Figure 5 are plots of Nifty Actual Returns vs expected returns at VaR = 0.05 and out of sample performance of 

APARCH (1, 1) model from back-test. 

 
Figure 4: Nifty Actual Returns vs expected returns at 

VaR = 0.05 of APARCH model (Upcycle) 

 
Figure 5:Performance of APARCH model 

(Upcycle) 

Bust phase analysis 

It is clearly evident from Table 2, all coefficients of EGARCH (1,1) are significant at 1% significance level and (𝛼 + 𝛽) < 1. 

There is high persistence in the downward financial cycle as 𝛽 (0.987787) is quite high. For 𝛾. the leverage term greater than 

zero and valued 0.110512 is significant and positive. There exists leverage effects and the positive shock in the past observations 

increase volatility than the negative innovations. The estimated EGARCH model as follows: 
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 log(ℎ𝑡) =  −0.115615 + 0.987787 log(ℎ𝑡−1) +  0.110512
𝜀𝑡−1

√ℎ𝑡−1

 − 0.079445 [
|𝜀𝑡−1|

√ℎ𝑡−1

− √2
𝜋⁄ ] (8) 

We test performance of EGARCH model using Kupiec unconditional test and Christoffersen’s conditional coverage test. The 

back test length of 495 and refitting of 1 we found expected exceedance to be 24.8 with 5% alpha. The actual exceedance found to 

be 16 only. The test reported p-value of 0.054 in Kupiec and 0.092 in Christoffersen test. In both the cases p-value is greater than 

5% significance level, therefore we accept the null hypothesis and confirm that our model is adequate.  

 
Figure 6:Nifty Actual Returns vs expected returns at 

VaR = 0.05 of EGARCH model (Down Cycle) 

 
Figure 7: Out of Sample Performance of EGARCH 

(down cycle) 

Figure 6 and Figure 7 are plots of Nifty Actual Returns vs expected returns at VaR = 0.05 and out of sample performance of 

EGARCH (1, 1) model from back-test. 

Half-life analysis 

Persistence and half-life analysis is reported in Table 3. Persistence measures continuation of an external shock (positive or 

negative) after the shock is removed from system. In other words, level of persistence indicates after the external shock how soon 

the data series will revert to the long-term mean or it will push further from the mean. Half-life particularly identifies the number 

of days after the shock it will take to revert to the long-term mean. Our analysis show in the boom the half-life is ranging between 

10-13 days in different models. Whereas, in the bust phase half-life increase to many folds and ranging between 57-74 days in 

different models. It means in the bust phase the volatility rises due to any external shock take larger time to revert to 

unconditional volatility.  Homoscedastic Volatility represents the unconditional volatility is quite high during boom phase ranging 

between 0.01317628 to 0.01758322 compared to bust phase ranging between 0.00879765 to 0.01446384. It signifies in boom 

phase the unconditional volatility is higher than the bust phase.  

 Boom Phase Bust phase 

Parameters 

EGARCH 

(1,1) 

skewed t 

APARCH 

(1,1) 

skewed t 

GJR 

GARCH 

(1,1) skewed 

t 

EGARCH 

(1,1) Std t  

APARCH 

(1,1) 

skewed Std 

t 

GJR 

GARCH 

(1,1) 

Skewed t 

Persistence 0.942786 0.939117 0.936097 0.987787 0.988223 0.989131 

Half-life (days) 12 12 11 57 59 64 

Heteroskedastic 

Volatility (HeV) 
0.014901 0.014927 0.014981 0.010524 0.010734 0.010766 

Homoscedastic 

Volatility (HoV) 
0.013540 0.014974 0.014215 0.008798 0.011798 0.011325 

Volatility 

Comparison HeV>HoV HoV>HeV HeV>HoV HeV>HoV HoV>HeV HoV>HeV 

Table 3: Volatility and Half-life estimations 

V. CONCLUSION 

The current paper explores the evolution of asymmetricity of the Indian stock market during the Indian Financial cycle (2001 to 

2017) established by Behera and Sharma (2019). By employing three different asymmetric GARCH models in two different phase 

of Indian Financial Cycle we tried to estimate the best asymmetric model of the GARCH family. We use Maximum-Likelihood, AIC 

and BIC to select optimal GARCH model. Further, we estimate the persistence of volatility using half-life estimate. Our observations 

suggest, APARCH (1,1) – skewed t distribution will be the best model for boom phase of Indian Financial cycle whereas, EGARCH 

(1,1) – t distribution will be the accurate model for bust phase. Our study also confirms the presence of asymmetricity in both the 

phases.  

On an important note, the leverage term in EGARCH and APARCH is positive that signifies an inverse leverage effect, in which 

positive shock increases future volatility more than negative shock. During the bust phase all the asymmetric models exhibit higher 

level of persistence in Indian market as a result the half-life estimations have gained many folds compared to boom phase though 

homoscedastic volatility is higher in boom phase. It signifies shock to the system remain for a longer time before die down. According 

to the EGARCH model, any shock will continue for 57 days in the bust phase. The long memory property is quite evident in the bust 
cycle that enable us to forecast volatility more accurately as we observe in Value at risk (VaR) back testing. 

Our study advocates the proof of higher homoscedastic volatility in the boom phase of the financial cycle due to the dominance 

of speculators and noise traders in the upcycle than the down cycle. One of the purposes of the numerous GARCH models is to offer 

decent predictions of volatility which can be used for portfolio allocation, risk measurement, option valuation, etc. Risk averse 

Investors may choose to adjust their portfolios by reducing portfolio allocation to securities whose volatilities are forecasted to rise. 

This study can be proven beneficial to the portfolio managers, traders and policy makers as they can formulate separate risk 

minimizing strategies using more advanced dynamic hedging techniques according to the phases of the financial cycle. 

http://www.ijcrt.org/
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